miércoles, 19 de febrero de 2014

dispositivos de entrada y salida

En computación, la entrada y salida o E/S (en inglés input/output o I/O), es la comunicación entre un sistema de procesamiento de información, tal como un ordenador, y el mundo exterior, posiblemente un humano u otro sistema de procesamiento de información. Los dispositivos de E/S son utilizados por una persona (u otro sistema) para comunicarse con un ordenador. Por ejemplo, un teclado o un ratón puede ser un dispositivo de entrada para un ordenador, mientras que los monitores e impresoras se consideran los dispositivos de salida para un ordenador. Dispositivos para la comunicación entre computadoras, tales como módems y tarjetas de red , por lo general sirven para entrada y salida.
Dispositivos de entrada y salida
Los dispositivos de entrada son aquellos dispositivos externos de un ordenador, el cual éste aloja componentes situados fuera de la computadora para algunos dispositivos externos, a la que pueden dar información y/o instrucciones. Mientras tanto los dispositivos de salida son aquellos dispositivos que permiten ver resultados del proceso de datos que realice la computadora (salida de datos). El más común es la pantalla o monitor, aunque también están las impresoras (imprimen los resultados en papel), los trazadores gráficos o plotters, las bocinas, etc.
Para diferenciar los dispositivos tenemos dos enfoques posibles, el primero de ellos se centra en el modo de almacenar la información (clasificando los dispositivos como de bloque o de carácter) y el segundo enfoque se centra en el destinatario de la comunicación (usuario, máquina, comunicadores).
Un dispositivo de bloque almacena la información en bloques de tamaño fijo. Al ser el bloque la unidad básica de almacenamiento, todas las escrituras o lecturas se realizan mediante múltiplos de un bloque. Es decir escribe 3 o 4 bloques, pero nunca 3,5 bloques. El tamaño de los bloques suele variar entre 512 Bytes hasta 32.768 Bytes. Un disco duro entraría dentro de esta definición. A diferencia de un dispositivo de bloque un dispositivo de carácter, no maneja bloques fijos de información sino que envía o recibe un flujo de caracteres. Dentro de esta clase podemos encontrar impresoras o interfaces de red.
Entre cada categoría y dispositivo, hay grandes diferencias:
·         Velocidad de transferencia de datos: varios órdenes de magnitud para transferir pero el hacer esto tienes que hacerlo con mucho cuidado, según las necesidades de cada dispositivo.
·         Aplicación: la funcionalidad para la que está diseñado un dispositivo tiene influencia sobre el software por ende lo tendrá sobre el sistema operativo.
·         Complejidad de control: cada dispositivo tiene una complejidad asociada, no es lo mismo controlar un ratón que gestionar un disco duro.
·         Unidad de transferencia: datos transferidos como un flujo de bytes/caracteres o en bloques de tamaño fijo.
·         Representación de datos: cada dispositivo puede usar su propia codificación de datos.
·         Condiciones de error: el porqué del error, su manera de notificarlo así como sus consecuencias difiere ampliamente entre los dispositivos.
Algunos dispositivos de entrada y salida
·         Entrada:
·         Teclado

·         Ratón

·         Joystick

·         Lápiz óptico

·         Micrófono

·         Webcam

·         Escáner

·         Escáner de código de barras

·         Lector de Huella digital

·         Código QR

·         Salida:
·         Monitor

·         Altavoz

·         Auriculares

·         Impresora 

·         Plotter

·         Proyector

·         Entrada/salida (mixtos):
·         Unidades de almacenamientoCDDVDMemory cardsDisco Duro Externo, Disco duro, Pendrive USB.

·         Módem

·         Router

·         Pantalla táctil

·         Tarjeta de red



generaciones de las computadoras

Primera Generación (1951-1958)
En esta generación había una gran desconocimiento de las capacidades de las computadoras, puesto que se realizó un estudio en esta época que determinó que con veinte computadoras se saturaría el mercado de los Estados Unidos en el campo de procesamiento de datos. Esta generación abarco la década de los cincuenta. Y se conoce como la primera generación. Estas máquinas tenían las siguientes características:
  • Usaban tubos al vacío para procesar información.
  • Usaban tarjetas perforadas para entrar los datos y los programas.
  • Usaban cilindros magnéticos para almacenar información e instrucciones internas.
  • Eran sumamente grandes, utilizaban gran cantidad de electricidad, generaban gran cantidad de calor y eran sumamente lentas.
  • Se comenzó a utilizar el sistema binario para representar los datos.
    En esta generación las máquinas son grandes y costosas (de un costo aproximado de 10,000 dólares).
    La computadora más exitosa de la primera generación fue la IBM 650, de la cual se produjeron varios cientos. Esta computadora que usaba un esquema de memoria secundaria llamado tambor magnético, que es el antecesor de los discos actuales.
    Segunda Generación (1958-1964)
    En esta generación las computadoras se reducen de tamaño y son de menor costo. Aparecen muchas compañías y las computadoras eran bastante avanzadas para su época como la serie 5000 de Burroughs y la ATLAS de la Universidad de Manchester. Algunas computadoras se programaban con cinta perforadas y otras por medio de cableado en un tablero.
    Características de está generación:
  • Usaban transistores para procesar información.
  • Los transistores eran más rápidos, pequeños y más confiables que los tubos al vacío.
  • 200 transistores podían acomodarse en la misma cantidad de espacio que un tubo al vacío.
  • Usaban pequeños anillos magnéticos para almacenar información e instrucciones. cantidad de calor y eran sumamente lentas.
  • Se mejoraron los programas de computadoras que fueron desarrollados durante la primera generación.
  • Se desarrollaron nuevos lenguajes de programación como COBOL y FORTRAN, los cuales eran comercialmente accsesibles.
  • Se usaban en aplicaciones de sistemas de reservaciones de líneas aéreas, control del tráfico aéreo y simulaciones de propósito general.
  • La marina de los Estados Unidos desarrolla el primer simulador de vuelo, "Whirlwind I".
  • Surgieron las minicomputadoras y los terminales a distancia.
  • Se comenzó a disminuir el tamaño de las computadoras.
    Tercera Generación (1964-1971)
    La tercera generación de computadoras emergió con el desarrollo de circuitos integrados (pastillas de silicio) en las que se colocan miles de componentes electrónicos en una integración en miniatura. Las computadoras nuevamente se hicieron más pequeñas, más rápidas, desprendían menos calor y eran energéticamente más eficientes. El ordenador IBM-360 dominó las ventas de la tercera generación de ordenadores desde su presentación en 1965. El PDP-8 de la Digital Equipment Corporation fue el primer miniordenador.
    Características de está generación:
  • Se desarrollaron circuitos integrados para procesar información.
  • Se desarrollaron los "chips" para almacenar y procesar la información. Un "chip" es una pieza de silicio que contiene los componentes electrónicos en miniatura llamados semiconductores.
  • Los circuitos integrados recuerdan los datos, ya que almacenan la información como cargas eléctricas.
  • Surge la multiprogramación.
  • Las computadoras pueden llevar a cabo ambas tareas de procesamiento o análisis matemáticos.
  • Emerge la industria del "software".
  • Se desarrollan las minicomputadoras IBM 360 y DEC PDP-1.
  • Otra vez las computadoras se tornan más pequeñas, más ligeras y más eficientes.
  • Consumían menos electricidad, por lo tanto, generaban menos calor.
    Cuarta Generación (1971-1988)
    Aparecen los microprocesadores que es un gran adelanto de la microelectrónica, son circuitos integrados de alta densidad y con una velocidad impresionante. Las microcomputadoras con base en estos circuitos son extremadamente pequeñas y baratas, por lo que su uso se extiende al mercado industrial. Aquí nacen las computadoras personales que han adquirido proporciones enormes y que han influido en la sociedad en general sobre la llamada "revolución informática".
    Características de está generación:
  • Se desarrolló el microprocesador.
  • Se colocan más circuitos dentro de un "chip".
  • "LSI - Large Scale Integration circuit".
  • "VLSI - Very Large Scale Integration circuit".
  • Cada "chip" puede hacer diferentes tareas.
  • Un "chip" sencillo actualmente contiene la unidad de control y la unidad de aritmética/lógica. El tercer componente, la memoria primaria, es operado por otros "chips".
  • Se reemplaza la memoria de anillos magnéticos por la memoria de "chips" de silicio.
  • Se desarrollan las microcomputadoras, o sea, computadoras personales o PC.
  • Se desarrollan las supercomputadoras.
    Quinta Generación (1983 al presente)
    En vista de la acelerada marcha de la microelectrónica, la sociedad industrial se ha dado a la tarea de poner también a esa altura el desarrollo del software y los sistemas con que se manejan las computadoras. Surge la competencia internacional por el dominio del mercado de la computación, en la que se perfilan dos líderes que, sin embargo, no han podido alcanzar el nivel que se desea: la capacidad de comunicarse con la computadora en un lenguaje más cotidiano y no a través de códigos o lenguajes de control especializados.
    Japón lanzó en 1983 el llamado "programa de la quinta generación de computadoras", con los objetivos explícitos de producir máquinas con innovaciones reales en los criterios mencionados. Y en los Estados Unidos ya está en actividad un programa en desarrollo que persigue objetivos semejantes, que pueden resumirse de la siguiente manera:
  • Se desarrollan las microcomputadoras, o sea, computadoras personales o PC.
  • Se desarrollan las supercomputadoras.
    Inteligencia artíficial:
    La inteligencia artificial es el campo de estudio que trata de aplicar los procesos del pensamiento humano usados en la solución de problemas a la computadora.
    Robótica:
    La robótica es el arte y ciencia de la creación y empleo de robots. Un robot es un sistema de computación híbrido independiente que realiza actividades físicas y de cálculo. Están siendo diseñados con inteligencia artificial, para que puedan responder de manera más efectiva a situaciones no estructuradas.
    Sistemas expertos:
    Un sistema experto es una aplicación de inteligencia artificial que usa una base de conocimiento de la experiencia humana para ayudar a la resolución de problemas.
    Redes de comunicaciones:
    Los canales de comunicaciones que interconectan terminales y computadoras se conocen como redes de comunicaciones; todo el "hardware" que soporta las interconexiones y todo el "software" que administra la transmisión.
  • jueves, 13 de febrero de 2014

    ARQUITECTURA DE HARDWARE

      ARQUITECTURA DE HARDWARE:
    Un computador desde la perspectiva del hardware, está constituido por una serie de dispositivos cada uno con un conjunto de tareas definidas. Los dispositivos de un computador se dividen según la tarea que realizan en: dispositivos de entrada, salida,
      
    Dispositivos de entrada: Son aquellos que permiten el ingreso de datos a un computador. Entre estos se cuentan, los teclados, ratones, scanner, micrófonos, cámaras fotográficas, cámaras de video, game pads y guantes de realidad virtual.

    Dispositivos de salida. Son aquellos que permiten mostrar información procesada por el computador. Entre otros están, las pantallas de video, impresoras, audífonos, plotters, guantes de realidad virtual, gafas y cascos virtuales.

    Dispositivos de almacenamiento. Son aquellos de los cuales el computador puede guardar información nueva y/o obtener información previamente almacenada. Entre otros están los discos flexibles, discos duros, unidades de cinta, CD-ROM, CD-ROM de re-escritura y DVD.

    Dispositivos de comunicación: Son aquellos que le permiten a un computador comunicarse con otros. Entre estos se cuentan los módems, tarjetas de red y enrutadores.
     Modem
    Dispositivo de cómputo: Es la parte del computador que le permite realizar todos los cálculos y tener el control sobre los demás dispositivos. Está formado por tres elementos fundamentales, la unidad central de proceso, la memoria y el bus de datos y direcciones.
      Diagrama esquemático del dispositivo de cómputo
    La unidad central de proceso (UCP) es el ‘cerebro’ del computador, está encargada de realizar todos los cálculos, utilizando para ello la información almacenada en la memoria y de controlar los demás dispositivos, procesando las entradas y salidas provenientes y/o enviadas a los mismos. Mediante el bus de datos y direcciones, la UCP se comunica con los diferentes dispositivos enviando y obteniendo tales entradas y salidas.
      Unidad Central de Proceso.
    Para realizar su tarea la unidad central de proceso dispone de una unidad aritmético lógica, una unidad de control, un grupo de registros y opcionalmente una memoria cache para datos y direcciones.
    La unidad aritmético lógica (UAL) es la encargada de realizar las operaciones aritméticas y lógicas requeridas por el programa en ejecución, la unidad de control es la encargada de determinar las operaciones e instrucciones que se deben realizar, el grupo de registros es donde se almacenan tanto datos como direcciones necesarias para realizar las operaciones requeridas por el programa en ejecución y la memoria cache se encarga de mantener direcciones y datos intensamente usados por el programa en ejecución.
    La memoria esta encargada de almacenar toda la información que el computador está usando, es decir, la información que es accedida (almacenada y/o recuperada) por la UCP y por los dispositivos. Existen diferentes tipos de memoria, entre las cuales se encuentran las siguientes:
    RAM (Random Access Memory): Memoria de escritura y lectura, es la memoria principal del computador. Solo se mantiene mientras el computador está encendido.

    ROM (Read Only Memory): Memoria de solo lectura, es permanente y no se afecta por el encendido o apagado del computador. Generalmente almacena las instrucciones que le permite al computador iniciarse y cargar (poner en memoria RAM) el sistema operativo.

    Cache: Memoria de acceso muy rápido, usada como puente entre la UCP y la memoria RAM, para evitar las demoras en la consulta de la memoria RAM.
    El bus de datos y direcciones permite la comunicación entre los elementos del computador. Por el bus de datos viajan tanto las instrucciones como los datos de un programa y por el bus de direcciones viajan tanto las direcciones de las posiciones de memoria donde están instrucciones y datos, como las direcciones lógicas asignadas a los dispositivos.
     La unidad central de proceso es más conocida como CPU por sus siglas en inglés Central Process Unit.
     La unidad aritmético lógica es más conocida como ALU por sus siglas en inglés Arithmetic Logic Unit.

    El mainboard también conocido como motherboard, placa madre o base es uno de los componentes básicos por no decir el más relvante en una PC. Su función es vital y gran parte de la calidad del funcionamiento general está determinada por este componente. Su función es administrar el CPU e interconectar los distintos periféricos.

    Así como el CPU es el cerebro, la placa madre es el sistema nervioso.

    Componentes básicos:
    •Zócalo para Microprocesador.
    •Memoria ROM (BIOS).
    •Bancos de memoria.
    •Chips de soporte o "Chipset": Puente norte y sur, "placas" onboard.
    •Buses internos: de control, de direcciones, de datos
    •Buses externos: los denominados bancos, zócalos o "slots"
    •Conexión con una fuente de alimentación y estándares de fabricación (factor de forma).

    TECNOLOGÍAS


    A través de las ediciones pasadas, probablemente tiene claro que el procesador es la unidad más importante de todo computador. Gracias a él, los equipos pueden convertirse en una herramienta "inteligente" que procesa datos y permite que todos los componentes del computador se unan. Sin él, la pantalla, el teclado, el mouse o los programas no tendrían sentido.

    Para poder funcionar, los procesadores están construidos por millones de transistores que mediante impulsos eléctricos dan vida a la máquina. Sin embargo, como en todas las cosas, existen varias formas para ordenar y ubicar estos transistores, y al momento de hablar de procesadores se pueden clasificar en dos grandes categorías. La primera corresponde a los procesadores construidos con tecnología CISC (Set de Instrucciones Computacionales Complejas) que originalmente se desarrollaron para computadores personales. En la otra esquina se encuentran los chips con tecnología RISC (Set de Instrucciones Computacionales Reducidas) que nacieron para los mainframes (computadores grandes o servidores).

    MARCAS DE COMPUTADORES

    *IBM
    * HP
    * Apple
    *DELL
    *MAC
    *SONY
    *TOSHIBA (ETC)…

    CARACTERISTICAS DE LOS COMPUTADORES

    CARACTERISTICAS DE EQUIPO GENERICO:
    •Es compatible con cualquier tipo de hardware.
    •Sin duda el factor económico es uno de los principales factores al momento de comprar una máquina. La pc ensamblada tiene un costo más bajo, pues es armada por los mismos vendedores, corando todos los gastos posibles para obtener las mayores ganancias a corto plazo.
    •La diferencia entre el precio de una maquina genérica y de marca puede ser hasta de un 80 por ciento.
    •En las maquinas ensambladas la garantía la ofrece el mismo vendedor-ensamblador y los términos y condiciones dependen en gran medida del grado de responsabilidad de esta persona.
    •además no se cuenta con un servicio técnico especializado que resuelva los problemas operarios de la computadora.

    CARACTERISTICAS DE EQUIPO ORIGINAL:
    •Tiene un alto valor económico, pues arrastra una flota de obreros que trabajan para que salga el quipo a un 100% de calidad, entre ellos ingenieros, supervisores, vendedores.
    •La garantía es más duradera, si prefiere una relación institucional con una compañía y necesita la certeza que tarde o temprano su problema será atendido.
    •El reemplazo de piezas dañadas, es de la misma marca del equipo.
    •Tiene la atención de una representante local de la empresa o más bien de la marca del equipo.
    •Muy difícil que No respondan o atiendan un problema en su máquina, será vigente la presencia del vendedor.
    •El vendedor de las computadoras genéricas puede cerrar su establecimiento de venta aun cuando los compradores tengan problemas con sus equipos ahí comprados, esto con el fin de evitar el pago de daños de la maquina vendida, con los de la máquina de marca siempre se tiene una respuesta.
    •Es más durable
    •Pasa por un proceso de prueba del hardware y prueba la maquina con decenas de programas.
    •Es más confiable el equipo.

    miércoles, 12 de febrero de 2014

    La historia de la computadora

    La primera máquina de calcular mecánica, un precursor de la computadora digital, fue inventada en 1642 por el matemático francés Blaise Pascal. Aquel dispositivo utilizaba una serie de ruedas de diez dientes en las que cada uno de los dientes representaba un dígito del 0 al 9. Las ruedas estaban conectadas de tal manera que podían sumarse números haciéndolas avanzar el número de dientes correcto. En 1670 el filósofo y matemático alemán Gottfried Wilhelm Leibniz perfeccionó esta máquina e inventó una que también podía multiplicar.
    El inventor francés Joseph Marie Jacquard, al diseñar un telar automático, utilizó delgadas placas de madera perforadas para controlar el tejido utilizado en los diseños complejos. Durante la década de 1880 el estadístico estadounidense Herman Hollerith concibió la idea de utilizar tarjetas perforadas, similares a las placas de Jacquard, para procesar datos. Hollerith consiguió compilar la información estadística destinada al censo de población de 1890 de Estados Unidos mediante la utilización de un sistema que hacía pasar tarjetas perforadas sobre contactos eléctricos.
    La máquina analítica
    También en el siglo XIX el matemático e inventor británico Charles Babbage elaboró los principios de la computadora digital moderna. Inventó una serie de máquinas, como la máquina diferencial, diseñadas para solucionar problemas matemáticos complejos. Muchos historiadores consideran a Babbage y a su socia, la matemática británica Augusta Ada Byron (1815-1852), hija del poeta inglés Lord Byron, como a los verdaderos inventores de la computadora digital moderna. La tecnología de aquella época no era capaz de trasladar a la práctica sus acertados conceptos; pero una de sus invenciones, la máquina analítica, ya tenía muchas de las características de una computadora moderna. Incluía una corriente, o flujo de entrada en forma de paquete de tarjetas perforadas, una memoria para guardar los datos, un procesador para las operaciones matemáticas y una impresora para hacer permanente el registro.
    Primeras computadoras
    Las computadoras analógicas comenzaron a construirse a principios del siglo XX. Los primeros modelos realizaban los cálculos mediante ejes y engranajes giratorios. Con estas máquinas se evaluaban las aproximaciones numéricas de ecuaciones demasiado difíciles como para poder ser resueltas mediante otros métodos. Durante las dos guerras mundiales se utilizaron sistemas informáticos analógicos, primero mecánicos y más tarde eléctricos, para predecir la trayectoria de los torpedos en los submarinos y para el manejo a distancia de las bombas en la aviación.
    Computadoras electrónicos
    Durante la II Guerra Mundial (1939-1945), un equipo de científicos y matemáticos que trabajaban en Bletchley Park, al norte de Londres, crearon lo que se consideró la primera computadora digital totalmente electrónico: el Colossus. Hacia diciembre de 1943 el Colossus, que incorporaba 1.500 válvulas o tubos de vacío, era ya operativo. Fue utilizado por el equipo dirigido por Alan Turing para descodificar los mensajes de radio cifrados de los alemanes. En 1939 y con independencia de este proyecto, John Atanasoff y Clifford Berry ya habían construido un prototipo de máquina electrónica en el Iowa State College (EEUU). Este prototipo y las investigaciones posteriores se realizaron en el anonimato, y más tarde quedaron eclipsadas por el desarrollo del Calculador e integrador numérico digital electrónico (ENIAC) en 1945. El ENIAC, que según mostró la evidencia se basaba en gran medida en la ‘computadora’ Atanasoff-Berry (ABC, acrónimo de Electronic Numerical Integrator and Computer), obtuvo una patente que caducó en 1973, varias décadas más tarde.
    El ENIAC contenía 18.000 válvulas de vacío y tenía una velocidad de varios cientos de multiplicaciones por minuto, pero su programa estaba conectado al procesador y debía ser modificado manualmente. Se construyó un sucesor del ENIAC con un almacenamiento de programa que estaba basado en los conceptos del matemático húngaro-estadounidense John von Neumann. Las instrucciones se almacenaban dentro de una llamada memoria, lo que liberaba la computadora de las limitaciones de velocidad del lector de cinta de papel durante la ejecución y permitía resolver problemas sin necesidad de volver a conectarse a la computadora.
    A finales de la década de 1950 el uso del transistor en las computadoras marcó el advenimiento de elementos lógicos más pequeños, rápidos y versátiles de lo que permitían las máquinas con válvulas. Como los transistores utilizan mucha menos energía y tienen una vida útil más prolongada, a su desarrollo se debió el nacimiento de máquinas más perfeccionadas, que fueron llamadas ordenadores o computadoras de segunda generación. Los componentes se hicieron más pequeños, así como los espacios entre ellos, por lo que la fabricación del sistema resultaba más barata.
    Circuitos integrados
    A finales de la década de 1960 apareció el circuito integrado (CI), que posibilitó la fabricación de varios transistores en un único sustrato de silicio en el que los cables de interconexión iban soldados. El circuito integrado permitió una posterior reducción del precio, el tamaño y los porcentajes de error. El microprocesador se convirtió en una realidad a mediados de la década de 1970, con la introducción del circuito de integración a gran escala (LSI, acrónimo de Large Scale Integrated) y, más tarde, con el circuito de integración a mayor escala (VLSI, acrónimo de Very Large Scale Integrated), con varios miles de transistores interconectados soldados sobre un único sustrato de silicio.
    La historia de la computadora es muy interesante ya que muestra como el hombre logra producir las primeras herramientas para registrar los acontecimientos diarios desde el inicio de la civilización, cuando grupos empezaron a formar naciones y el comercio era ya medio de vida.
    La evolución histórica del procesamiento de datos se divide en cuatro fases:
    1.- técnicas de registros
    2.- dispositivos de cálculo
    3.- programas de tarjetas perforadas
    4.- computadores electrónicos
    una computadora procesa datos. Las empresas desarrollan departamentos de procesamiento de datos ( programación de computadoras ), pues las computadoras procesan datos para producir información significativa.
    Los datos se construyen de hechos y cifras en bruto (sin procesar).
    La información está constituida por los datos procesados; la información tiene significado , los datos no.
    La computadora y sus programas llevan a cabo el procesamiento de la entrada; por lo tanto el programa convierte los datos en información útil.

    Actualmente las computadoras, se utilizan ampliamente en muchas área de negocios, la industria, la ciencia y la educación.
    Las computadoras se han desarrollado y mejorado según las necesidades del hombre para realizar trabajos y cálculos más rápidos y precisos.
    Una de las primeras herramientas mecánicas del cálculo fue el ábaco en el medio oriente, el cual se compone de un marco atravesado por alambres y en cada uno se deslizan una serie de argollas.
    Tiempo después aparecen las estructuras de Napier, que se utilizaron para multiplicar.
    En 1642, Blaise Pascal, desarrolló una calculadora de ruedas engranadas giratorias, (antecedente de la calculadora de escritorio), sólo podía sumar y restar, se le llamó la "Calculadora Pascal".
    En 1671 Gottfried Leibnitz, construyó la calculadora sucesora a la de Pascal la cual, podía efectuar las cuatro operaciones aritméticas
    Charles Babbage, matemático e ingeniero inglés, es considerado el Padre de la computadora actual, ya que en 1822, construyó la máquina de diferencias , la cual se basaba en el principio de una rueda giratoria que era operada por medio de una simple manivela. Después ésta máquina fue sustituida por otra que podía ser programada para evaluar un amplio intervalo de funciones diferentes la cual, se conoció como "Máquina Analítica de Charles Babbage",
    Años después, aparece Herman Hollerith, quien, en 1880, inventó las máquinas perforadoras de tarjetas, inspiradas en el telar de Jacquard, y la finalidad de la máquina de Hollerith era acumular y clasificar la información. Con ésta máquina se realizo el primer censo guardando la información en una máquina ya que ante, se procesaban en forma manual.
    Hollerith fue el iniciador de la gran compañía IBM.
    En 1884, Dor Eugene Felt, construye la primera máquina práctica que incluía teclas e impresora, llamado "Comptómetro o calculadora con impresora"
    Konrad Zuse, construye su calculadora electromecánica Z1, que ya emplea un sistema binario y un programa indicado en cinta perforadora, fue la primera máquina de tipo mecánico y es considerada como la primera computadora construida, debido a que manejaba el concepto de programa e incluía unidad aritmética y memoria.
    Howard Aiken junto con la IBM, construyó en 1937, la computadora MARK 1, en donde la información se procesaba por medio de tarjetas perforadoras, con esta máquina se podían resolver problemas de ingeniería y física, así como problemas aritméticos y lógicos. Después aparecen la MARK II, MARK III Y MARK IV. Con esta calculadoras se alcanza la automatización de los procesos.
    Von Neumann, construye la EDVAC en 1952, la cual utilizaba el sistema binario e introducía el concepto de programa almacenado. La primera aplicación que se le dio a la máquina fue para el diseño y construcción de la bomba H.
    la ABC, computadora construida por John Vincent Atanastoff, la cual contenía bulbos, es considerada como la primer computadora electrónica.


    Arquitectura De Los Computadores


    La arquitectura de computadoras es el diseño conceptual y la estructura operacional fundamental de un sistema de computadora. Es decir, es un modelo y una descripción funcional de los requerimientos y las implementaciones de diseño para varias partes de una computadora, con especial interés en la forma en que la unidad central de proceso (UCP) trabaja internamente y accede a las direcciones de memoria.
    También suele definirse como la forma de seleccionar e interconectar componentes de hardware para crear computadoras según los requerimientos de funcionalidad, rendimiento y costo.
    El ordenador recibe y envía la información a través de los periféricos por medio de los canales. La UCP es la encargada de procesar la información que le llega al ordenador. El intercambio de información se tiene que hacer con los periféricos y la UCP. Todas aquellas unidades de un sistema exceptuando la UCP se denomina periférico, por lo que el ordenador tiene dos partes bien diferenciadas, que son: la UCP (encargada de ejecutar programas y que está compuesta por la memoria principal, la Unidad aritmético lógica (UAL) y la Unidad de Control) y los periféricos (que pueden ser de entrada, salida, entrada-salida y comunicaciones).
    Introducción
    La implantación de instrucciones es similar al uso de una serie de desmontaje en una fábrica de manufacturación. En las cadenas de montaje, el producto pasa a través de muchas etapas de producción antes de tener el producto desarmado. Cada etapa o segmento de la cadena está especializada en un área específica de la línea de producción y lleva a cabo siempre la misma actividad. Esta tecnología es aplicada en el diseño de procesadores eficientes.
    A estos procesadores se les conoce como pipeline processors. Estos están compuestos por una lista de segmentos lineales y secuenciales en donde cada segmento lleva a cabo una tarea o un grupo de tareas computacionales. Los datos que provienen del exterior se introducen en el sistema para ser procesados. La computadora realiza operaciones con los datos que tiene almacenados en memoria, produce nuevos datos o información para uso externo.
    Las arquitecturas y los conjuntos de instrucciones se pueden clasificar considerando los siguientes aspectos:
    ·         Almacenamiento de operativos en la UPC: dónde se ubican los operadores aparte de la substractora informativa (SI)
    ·         Número de operandos explícitos por instrucción: cuántos operandos se expresan en forma explícita en una instrucción típica. Normalmente son 0, 1, 2 y 3.
    ·         Posición del operando: ¿Puede cualquier operando estar en memoria?, o deben estar algunos o todos en los registros internos de la UPC. Cómo se especifica la dirección de memoria (modos de direccionamiento disponibles).
    ·         Operaciones: Qué operaciones están disponibles en el conjunto de instrucciones.
    ·         Tipo y tamaño de operandos y cómo se especifican.